Connecting you with the University of Missouri’s innovative research and creative activity

Articles Tagged with pollen

Between the Pistil and the Pollen

An interview with Bruce McClure, Professor, Biochemistry

Solving intellectual puzzles is a rewarding activity for Bruce McClure, MU Professor of Biochemistry, as he seeks to unravel the mystery of plant mating. If McClure and his team of researchers can crack the code and understand how breeding barriers work within plants, they will be one step closer to their goal of “making the world better through agriculture.”

Of Maize and Mutants

An interview with Karen Cone, Professor of Biological Sciences

Doing maize genetics, according to one geneticist, is “really cool.” It is exactly this kind of enthusiasm that fuels Karen Cone, Professor of Biological Sciences at MU, who specializes in plant genetics. Asked to summarize what researchers in her field actually do, Cone laughs and responds, “Geneticists make mutants…a geneticist learns about the way something works in real life by screwing it up, trying to figure out what’s wrong with the mutant, and then inferring what is normal when the mutant isn’t there.” The mutants that Cone makes involve corn and purple pigmentation.

Audio and Video Tagged with pollen

How Plants Identify Appropriate Mates

From an interview with Bruce McClure, Professor, Biochemistry

Because plants can’t move around to find suitable mates, they depend on other forces, such as birds, bees, and wind, to bring them pollen. They can make themselves attractive to one kind of animal versus another, but they don’t have control over whose pollen is transferred to them. McClure is trying to understand how plants are able to screen all the pollen that comes to them and then identify the best choice.

Why do Maize Genetics?

From an interview with Karen Cone, Professor of Biological Sciences

According to Karen Cone, Professor of Biological Sciences, one can learn a lot about any kind of genetic organism by doing genetics in a model: “Maize is considered to be a model genetic organism because what we learn in this organism is translatable to others.” Because it is a plant, she explains, there is the added advantage of seeds that can go dormant, stored for years until one wants to run additional crosses with them. Maize has other positive attributes as well; for example, it has separate male and female parts, and every kernel is a baby. With just one cross producing 300 to 800 progeny on each ear, Cone finds maize to be an ideal organism for genetic research.