Connecting you with the University of Missouri’s innovative research and creative activity

Articles Tagged with GLH

There are no articles that matched your search criteria.

Audio and Video Tagged with GLH

Erica Racen, Molecular Microbiology and Immunology

From an interview with Graduate Students, Life Sciences

A graduate student in the School of Medicine’s Department of Molecular Microbiology and Immunology, Erica Racen works with professor Karen Bennett to study germline development in a small worm known as Caenorhabditis elegans. The germline are the cells that go on to become the next generation of the eggs or the sperm. “Our lab studies four proteins which are important for that development,” Racen explains. “When one of those proteins is missing, the worm becomes sterile.” Racen describes the worm in question, which is only one millimeter in length. Because it has a large germline, it is a good organism to study germline development.

“When I first started studying the protein GLH-1,” recounts Racen, “I knew it was important for fertility, but I did not know why. So I started to look at what things are different when GLH is missing. I found a relationship to the protein Dicer, that when GLH-1 was missing, so was Dicer. I also found that when Dicer was missing, so was RNA.” Trying to understand this relationship, Racen has conducted a series of experiments. She describes an actual experiment, one that involves mutants in which the gene has been knocked out or uses the process of “RNA interference” (injecting double-stranded RNAs into the worm, so that in the next generation those proteins are not produced). In this manner, Racen is able to study different genes in the worm.

Racen describes “a typical day in the lab,” providing a tour of Karen Bennett’s lab and showing some of the equipment used for her experiments. A typical day begins at sunrise when Racen plans her experiments, and will likely involve grinding worms to extract the cell lysate and problem solving with colleagues doing similar experiments.

Racen refers to her research as basic science. While the protein she works with is also found in humans, as of now there are few direct applications of this kind of research. Racen explains, however, “The more we learn about basic science, it will help us develop better treatments down the road. If we can understand how an egg develops from the very beginning, including all the proteins involved, we will have a better understanding of how to treat it.”